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ABSTRACT Susceptibility to Clostridium difficile infection (CDI) is primarily associated
with previous exposure to antibiotics, which compromise the structure and function of
the gut bacterial community. Specific antibiotic classes correlate more strongly with re-
current or persistent C. difficile infection. As such, we utilized a mouse model of infection
to explore the effect of distinct antibiotic classes on the impact that infection has on
community-level transcription and metabolic signatures shortly following pathogen colo-
nization and how those changes may associate with persistence of C. difficile. Untar-
geted metabolomic analysis revealed that C. difficile infection had significantly larger im-
pacts on the metabolic environment across cefoperazone- and streptomycin-pretreated
mice, which became persistently colonized compared to clindamycin-pretreated mice,
where infection quickly became undetectable. Through metagenome-enabled metatran-
scriptomics, we observed that transcripts for genes associated with carbon and energy
acquisition were greatly reduced in infected animals, suggesting that those niches were
instead occupied by C. difficile. Furthermore, the largest changes in transcription were
seen in the least abundant species, indicating that C. difficile may “attack the loser” in
gut environments where sustained infection occurs more readily. Overall, our results
suggest that C. difficile is able to restructure the nutrient-niche landscape in the gut to
promote persistent infection.

IMPORTANCE Clostridium difficile has become the most common single cause of
hospital-acquired infection over the last decade in the United States. Colonization resis-
tance to the nosocomial pathogen is primarily provided by the gut microbiota, which is
also involved in clearing the infection as the community recovers from perturbation. As
distinct antibiotics are associated with different risk levels for CDI, we utilized a mouse
model of infection with 3 separate antibiotic pretreatment regimens to generate alterna-
tive gut microbiomes that each allowed for C. difficile colonization but varied in clear-
ance rate. To assess community-level dynamics, we implemented an integrative multi-
omics approach that revealed that infection significantly changed many aspects of the
gut community. The degree to which the community changed was inversely correlated
with clearance during the first 6 days of infection, suggesting that C. difficile differentially
modifies the gut environment to promote persistence. This is the first time that
metagenome-enabled metatranscriptomics have been employed to study the behavior
of a host-associated microbiota in response to an infection. Our results allow for a previ-
ously unseen understanding of the ecology associated with C. difficile infection and pro-
vide the groundwork for identification of context-specific probiotic therapies.
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One of the many beneficial functions provided by the indigenous gut bacterial
community is its ability to protect the host from infection by pathogens (1). This

attribute, termed colonization resistance, is one of the main mechanisms that protect
healthy individuals from the gastrointestinal pathogen Clostridium difficile (2–4). C. dif-
ficile infection (CDI) is responsible for most cases of antibiotic-associated colitis, a
toxin-mediated diarrheal disease that has dramatically increased in prevalence over the
last 10 years. There are an estimated 453,000 cases of CDI resulting in 29,000 deaths in
the United States annually (5). Antibiotics are a major risk factor for CDI and are thought
to increase susceptibility by disrupting the gut bacterial community structure; however,
it is still unclear what specific changes to the microbiota contribute to this susceptibility
(6, 7). Although most classes of antibiotics have been associated with initial suscepti-
bility to CDI, fluoroquinolones, clindamycin, and cephalosporins are linked to increased
risk of recurrent or persistent infection (8–10). This raises questions about the groups
of bacteria that are differentially impacted by certain therapies and how these changes
affect the duration or severity of the infection.

Associations between the membership and functional capacity of the microbiota as
measured by the metabolic output suggest that antibiotics increase susceptibility by
altering the nutrient milieu in the gut to one that favors C. difficile metabolism (11–13).
One hypothesis is that C. difficile colonization resistance is driven by competition for
growth substrates by an intact community of metabolic specialists. This has been
supported by animal model experiments over the past several decades (14–16). This
line of reasoning has been carried through to the downstream restoration of coloni-
zation resistance with the application of fecal microbiota transplant (FMT). Although an
individual’s microbiota may not return to its precise original state following FMT, it is
hypothesized that the functional capacity of the new microbiota is able to outcompete
C. difficile for resources and clear the infection (13, 17).

Leveraging distinct antibiotic treatment regimens in a murine model of CDI (18), we
and others have shown that C. difficile adapts its physiology to the distinct cecal
microbiomes that resulted from exposure to antibiotics (18, 19). We went on to show
that C. difficile appears to adapt portions of its metabolism to fit alternative nutrient
niche landscapes. As the diet of the mice remained unchanged, changes in the cecal
metabolome are likely driven by the intestinal microbiota. Although it has been
established that C. difficile colonizes these communities effectively, it is unknown
whether the differences in the metabolic activity of communities following antibiotic
treatment are impacted by C. difficile colonization or if they correlate with prolonged
infection. Historically, it has been difficult to ascribe specific metabolic contributions to
individual taxa within the microbiota during perturbations, especially within the con-
text of a host. To address this limited understanding, we employed an integrative
untargeted metabolomic and metagenome-enabled metatranscriptomic approach to
investigate specific responses to infection of the gut microbiota in a murine model of
CDI. This high-dimensional analysis allowed us not only to characterize the metabolic
output of the community but also to identify which subgroups of bacteria were
differentially active during mock infection and CDI. Our results supported the hypoth-
esis that CDI was indeed associated with altered community-level gene transcription
and metabolomic profile of susceptible environments. This effect was significantly more
pronounced in communities where C. difficile was able to maintain colonization. This
work highlights the need for increased appreciation of the differential, combined
effects of antibiotics and CDI on the gut microbiota to develop more successful
targeted therapies that eliminate C. difficile colonization.

RESULTS
Distinct antibiotic pretreatments are associated with alternative community

structures that are equally susceptible to initial C. difficile colonization but differ
in patterns of clearance. We have previously shown that when conventionally reared
specific-pathogen-free (SPF) mice were pretreated with one of three different antibi-
otics (streptomycin, cefoperazone, and clindamycin) (see Table S1 in the supplemental
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material), each pretreatment was associated with altered patterns of C. difficile virulence
factor expression (19). These antibiotics were chosen not only for the ability to reduce
C. difficile colonization resistance in a mouse model (18) but also for distinct and
significant impacts on the structure and diversity of the cecal microbiota (Fig. 1A) (19).
In each antibiotic pretreatment, we observed equally high levels of C. difficile coloni-
zation on the day after infection; however, over the subsequent 9 days clindamycin-
pretreated mice were the only mice in which the amount of C. difficile in the feces fell
below the limit of detection, while mice receiving the other pretreatments remained
highly colonized (P � 0.01) (Fig. 1A). We hypothesized that this occurred in the
clindamycin-pretreated mice because the perturbed intestinal community occupied
niche space that overlapped that of C. difficile.

We chose to focus our remaining experiments on cecal samples collected 18 h after
infection to assess the behavior of C. difficile directly prior to the reduction in detectable
C. difficile. This endpoint corresponded with that in a previous study where C. difficile
reached maximum cecal vegetative cell load with few detectable spores (20). We also
elected to examine cecal content because the cecum was more likely than stool to be
a site of active bacterial metabolism and would allow for an assessment of functional
differences in the microbiota. At 18 h after infection, we found that the communities
remained highly differentiated from untreated controls as measured by 16S rRNA gene
sequencing of the V4 region (Fig. 1B). The composition of streptomycin-pretreated
communities was more variable between cages but was generally enriched for mem-
bers of the Bacteroidetes phylum. Cefoperazone- and clindamycin-pretreated cecal
communities were consistently dominated by members of the Lactobacillaceae and
Enterobacteriaceae families, respectively. Despite variation in the community structures,
there were no significant differences in the number of vegetative cells among any of
the antibiotic pretreatment groups (Fig. 1C). All susceptible mice were colonized with
~1 � 108 vegetative CFU per gram of cecal content, and untreated mice maintained
C. difficile colonization resistance.

Multiple biological signatures in the bacterial community and metabolome
differentiated cecal microbiomes that remained colonized by C. difficile from
those that did not. Pretreatment with antibiotics not only alters the structure of the
resident microbiota but also has a dramatic impact on the intestinal metabolome
(11–13). To understand the ramifications that each antibiotic had on the cecal metabo-

FIG 1 Distinct antibiotic pretreatments have differential impacts on C. difficile colonization and cecal microbiota community structure. (A) CFU of C. difficile 630
in stool of infected mice following each antibiotic-pretreated group over 10 days of infection. Median and interquartile range are shown for each time point.
Both cefoperazone and streptomycin pretreatments had more significantly detectable CFU on the final day than did clindamycin pretreatment (P � 0.001). (B)
Relative abundance of family-level OTU taxonomic classification in each pretreatment group from 16S rRNA gene sequencing. (C) Quantification of terminal
vegetative C. difficile CFU in cecal content across 18-h colonization models. Black lines indicate median values, and each pretreatment group had significantly
greater detectable CFU than no-antibiotic controls. Significant differences in panel A were determined through permutational multivariate analysis of variance
(PERMANOVA) with dynamic time warping, and those in panel C were found by Wilcoxon rank sum test with Benjamini-Hochberg correction when necessary.
The limit of detection (LOD) was used in place of undetectable values for statistical testing.
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lomic environment, we performed untargeted metabolomic analysis on the cecal
contents that were also utilized in the 16S rRNA gene sequencing. We identified a total
of 727 distinct metabolites. In combination with our 16S rRNA gene sequencing results,
we first characterized the differences between the microbiomes (i.e., the microbiota,
plus the associated metabolome) of the mock-infected animals to quantify possible
drivers of communities that cleared the infection. To focus our analysis on ascertaining
changes in discrete populations within the microbiota, we generated operational
taxonomic units (OTUs) clustered at 97% similarity. We also removed all C. difficile 16S
rRNA gene sequences, which represented an average of 2.113% of sequencing reads
across infection groups, to eliminate their direct impact in downstream calculation.
Using these methods, we discovered that the Bray-Curtis dissimilarities of both the
community structure (P � 0.001) and the metabolome (P � 0.001) were significantly
different between cleared and colonized groups during the early stages of infection
(Fig. 2A and C). These results supported the hypothesis that the cecal environment
created by clindamycin pretreatment was highly divergent from the other groups and
likely contributed to the clearance seen in the subsequent days.

To identify the populations and metabolites that were associated with sustained
colonization, we utilized Random Forest machine learning with cross-validation to
identify the smallest optimal subset of features that could successfully differentiate
microbiomes associated with infection clearance and those that remain colonized (21).
We identified a model with 5 OTUs that correctly classified all samples to their
corresponding groups (Fig. 2B) (out-of-bag error � 0%). Interestingly, these OTUs were
not consistently abundant in antibiotic-pretreated communities. Similarly, when we
used the same approach with the metabolomic data, we identified a model that used
5 metabolites that correctly differentiated the groups (Fig. 2D) (out-of-bag error � 0%).
Together, these results further supported the hypothesis that the environment of the
cecum, even early during infection, is distinct between groups that clear the infection
and those that maintain C. difficile at high levels. Furthermore, results from machine
learning analysis suggest that rare members of the communities had a disproportionate
influence on the clearance patterns observed between pretreatment regimens and that
changes in community structure may be less consistent than changes in the metatran-
scriptome or metabolome.

Amino acid metabolism by C. difficile appears important for sustained coloni-
zation across susceptible environments. The ability of C. difficile to metabolize amino
acids via Stickland fermentation may be a critical nutrient niche that enables it to
colonize some perturbed communities (22). We were curious whether this behavior was
conserved across multiple distinct gut environments where C. difficile was able to
colonize. We assessed the changes between the antibiotic-pretreated, mock-infected
microbiomes and those of untreated, C. difficile-resistant animals. Not only were the
relative abundances of Stickland fermentation substrates increased across susceptible
environments, but several secondary bile acids which have been shown to be nega-
tively correlated with C. difficile susceptibility were significantly decreased (Fig. S1D)
(P � 0.001). Additionally, when we constructed a Random Forest classification model to
differentiate the groups, we identified multiple members of the Clostridia which are
capable of metabolizing amino acids for growth (23). The relative abundances of these
populations were significantly lower in susceptible animals (Fig. S1B) (P � 0.001). We
also performed a similar analysis to investigate changes induced by C. difficile coloni-
zation itself in these susceptible conditions. Although CDI alone did not induce
significant shifts in the global community structure or metabolome (Fig. S2A and C)
(P � 0.185 and 0.065, respectively), several features were able to discriminate infected
and uninfected microbiomes with high accuracy. This analysis highlighted numerous
growth substrates that are known for C. difficile in all pretreated mice, including 6
Stickland substrates, 4 of which were proline conjugates, along with arabonate/xy-
lonate (Fig. S2D). Furthermore, 5-aminovalerate, the most common end product of
Stickland fermentation, was significantly increased during infection in almost all of the
metabolomes. Inspection of these specific metabolites revealed that clindamycin pre-
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FIG 2 Significant differences in cecal community structure and metabolomes track with downstream C. difficile clearance across antibiotic pretreatment
regimens. (A) Nonmetric multidimensional scaling (NMDS) ordination of Bray-Curtis distances of OTU relative abundances between mouse cecal
communities that remained colonized by C. difficile and those that eventually cleared the infection. (B) Relative abundance of OTUs included the optimal
model generated by AUCRF classifying the same groups as in panel A. Species-level identification was obtained using centroid representative sequences
for each OTU. (C) NMDS ordination of Bray-Curtis distances using metabolite intensities between the abovementioned groups of animals. (D) Scaled
intensity of metabolites included the optimal model generated by AUCRF classifying colonized and clearing mouse cecal microbiomes. Differences for
ordinations in panels A and C were calculated using PERMANOVA. Optimal AUCRF models demonstrated 0% out-of-bag (OOB) error, and significant
differences in panels B and D were determined by Wilcoxon rank sum test with Benjamini-Hochberg correction.
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treatment was the only condition under which both the inputs and outputs of Stickland
fermentation were less abundant than in the untreated mice (Fig. S3).

Infection corresponded with larger shifts in the metatranscriptomes of com-
munities that allowed sustained C. difficile colonization. Despite the strong associ-
ations between bacterial community structure and the metabolome with colonization
resistance, it was difficult to associate specific populations with changes in those
metabolites that were associated with the duration of infection. To gain a more specific
understanding of how the microbiota or C. difficile shaped the metabolic environment,
we employed parallel metagenomic and metatranscriptomic shotgun sequencing of
the samples collected from the cecal content of the mice used in the previous analyses.
To achieve usable concentrations of bacterial mRNA after rRNA depletion, we had to
pool the samples within each treatment and infection group. To establish confidence
in the results of a pooled analysis, we calculated within-group sample variance among
replicates using CFU, OTU relative abundance, and metabolomic relative abundance
data (Table S3). These analyses revealed low levels of variance within control and
experimental groups. Following sequencing, metagenomic reads from mock-infected
cecal communities were assembled de novo into contigs, and putative genes were
identified, resulting in 234,868 (streptomycin), 83,534 (cefoperazone), and 35,681 (clin-
damycin) open reading frames in each metagenome. Of these putative genes, 28.5%
could be annotated to a known function based on the KEGG database, and many of
these annotations were homologs to genes in species that were found in our data set.
Streptomycin pretreatment resulted in a significantly more diverse community than
other groups based on 16S rRNA gene sequence data, so a more diverse metagenome
was expected (Table S1). Supporting this prediction, 2,408 unique functionally anno-
tated genes were detected in the streptomycin pretreatment metagenome, at least
1,163 more genes than were found in either the cefoperazone or clindamycin metag-
enome (Fig. S4A to D). Metagenome-enabled mapping of the metatranscriptomic reads
revealed that we were able to obtain informative depths of sequencing from across the
metagenomic libraries (Fig. S4E and F). As expected, genes with any detectable
transcript in any metatranscriptome were a subset of their corresponding metag-
enome. Metatranscriptomic read abundances were normalized to corresponding met-
agenomic coverage per gene to normalize for the abundance of the contributing
bacterial taxa. This step was followed by a final subsampling of reads from each
condition to control for uneven sequencing effort and to identify genes with the largest
changes in transcription relative to uninfected animals.

We hypothesized that the degree of change in the metatranscriptome correspond-
ing with C. difficile colonization would reflect the shifts seen in the metabolome. As
disparate bacterial taxa possess vastly different metabolic capabilities and the antibiotic
pretreatments induced distinct species profiles in each community, we tested our
hypothesis by delineating the transcriptomic contributions of separate bacterial taxa
within each metatranscriptome. Since many genes lack a specific functional annotation
in KEGG but retain general taxonomic information, we continued the analysis at the
genus level of classification for all genes contributed to each metagenome. Using this
approach, we directly compared the normalized transcript abundances for each gene
between infected and uninfected states for each antibiotic pretreatment and calculated
the Spearman correlation to identify distinct patterns of transcription (Fig. 3). This
resulted in 2,473 genes that had an average distance from the center of 2.545
associated with streptomycin pretreatment, 2,930 genes at an average distance of 3.854
in cefoperazone pretreatment, and only 727 genes at an average distance of 2.414 with
clindamycin pretreatment. Overall, the clindamycin pretreatment was associated with
the fewest transcription outliers between uninfected and infection conditions com-
pared with those of the other antibiotic groups. This suggested that the degree to
which the metatranscriptome was altered by infection corresponded to prolonged
colonization.

This analysis also revealed that outlier genes originated in underrepresented genera.
In streptomycin-pretreated mice, 937 genes belonging to Lactobacillus were increased
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in transcription during C. difficile infection, where Lactobacillus accounted for 0.42% of
the 16S rRNA gene sequences (Fig. 3A). In cefoperazone-pretreated mice, 2,290 genes
belonging to Bacteroides had lower transcription during C. difficile infection; Bacteroides
accounted for 1.49% of the 16S rRNA gene sequences (Fig. 3B). A consistent trend in
streptomycin- and cefoperazone-pretreated mice was an overrepresentation of highly
transcribed genes from genera belonging to Bacteroidetes during mock infection. The
metatranscriptomes among mice from both of these pretreatment conditions poorly
correlated between mock and infected conditions, indicating a high degree of
change induced by C. difficile colonization (R � 0.334 and R � 0.031, respectively). In
clindamycin-pretreated mice, the largest difference in transcription was for 510 Lacto-
bacillus genes with increased transcription during CDI; Lactobacillus accounted for 2.7%
of the 16S rRNA gene sequences (Fig. 3C). Infected and uninfected metatranscriptomes

FIG 3 C. difficile colonization alters gene transcription of taxonomic groups differentially between antibiotic pretreatments. Each point
represents a unique gene from the respective metagenomic assembly. Coordinates were determined by the log2-transformed difference
in transcription level between C. difficile-infected and mock-infected conditions for each gene. Outliers were defined using linear
correlation and a squared residual cutoff of 2. Euclidean distance of outliers to the x � y line was also calculated. The coloring of each
point indicates the genus from which the transcript originated, and the gray points denote those genes with consistent transcription levels
between conditions as defined by outlier analysis. Antibiotic pretreatments: streptomycin (A), cefoperazone (B), and clindamycin (C).
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from mice pretreated with clindamycin were more strongly correlated with each other
than with either of the other pretreatments (R � 0.864). This suggests that although
C. difficile altered the streptomycin- and cefoperazone-pretreated communities in
which it was able to remain stably colonized, it had minimal impact on the clindamycin-
pretreated community in which it was not able to remain colonized.

The largest changes in metatranscriptomes in response to infection were
concentrated in low-abundance taxa of each pretreatment group. To explore the
observation that rare taxa were responsible for the largest differences in transcription
in response to infection, we tabulated the absolute difference between mock- and
C. difficile-infected transcriptomes for each genus in each antibiotic pretreatment. We
further normalized these values for the number of genes detected in each genus to
adjust for genera that were more successfully assembled or annotated, and we elimi-
nated genera where fewer than 50 genes were detected in the metatranscriptome.
Taxa were then stratified into categories based on their relative abundance in each
community from 16S rRNA gene sequencing (Fig. 4). This revealed that most change
occurred among the rare genera and that the degree of change was inversely corre-
lated with sustained colonization (same colors denoting genera as in Fig. 3). To this
point, minority metatranscriptomic absolute differences were significantly reduced in
clindamycin pretreatment (P � 0.001). Additionally, the proportions of taxa in the
lowest-relative-abundance bracket were similar across pretreatment groups (~88.9%).
As a corollary, we predicted that the majority of unique genes or metabolic potential
was held within this minority, and following quantification, this proved to be the case
(Table S4). As a consequence, the downstream impacts on functionality may have a
disproportionately large effect on the overall environment of the intestine as a function
of its collective metabolism.

Altered transcription within low-abundance taxa favors reduced nutrient com-
petition with C. difficile in communities that permit sustained colonization. Based
on our metabolomic and metatranscriptomic results, we hypothesized that pathways
with the greatest differences between mock- and C. difficile-infected mice would be
related to catabolism of metabolites that C. difficile could use for growth. To assess
these changes, we identified those annotated transcripts that were associated with
genera that represented less than 0.1% of the community as measured with our 16S
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rRNA gene sequence data (Fig. 5). This resulted in the identification of 585 genes that
were differentially transcribed between clindamycin-pretreated mice and the
streptomycin- and cefoperazone-pretreated mice. From this group of genes, we filtered
the collection to identify those genes that were unique to either the clindamycin-
pretreated mice or the streptomycin- and cefoperazone-pretreated mice. Finally, we
limited our analysis to those genes that were meaningfully different between the mock-
and C. difficile-infected groups in each antibiotic pretreatment group. This resulted in 34
genes from 11 pathways. These genes and pathways were primarily involved in simple
carbohydrate-containing molecule acquisition/utilization (Fig. 5). Interestingly, many of
these genes had decreased transcription during infection compared to mock-infected
controls. At the pathway level, many genes associated with acquisition of galactose and
amino sugar (both C. difficile growth substrates) were reduced during infection in both
streptomycin- and cefoperazone-pretreated mice. Conversely, pathways uniquely as-
sociated with clindamycin-pretreated communities were related to the metabolism of
a diverse array of carbon sources, which may indicate ineffective competition by
C. difficile with this community for any particular growth substrate. Our results indeed
suggest that C. difficile colonization induces a shift in transcriptional activity for a
minority subset of species, possibly in an effort to segregate a desired nutrient niche,
prior to the introduction of the hallmark disease phenotypes associated with CDI.

DISCUSSION

Our results demonstrate that distinct intestinal ecosystems are differentially im-
pacted by C. difficile colonization and that these changes to community metabolism
could have implications for the ability of the pathogen to persist in those environments.
We had previously demonstrated that C. difficile spore production and toxin activity
differ between these pretreatment regimens (19). As both processes have been linked
to environmental concentrations of specific growth nutrients (24), these results sug-
gested that despite high initial C. difficile colonization, the microbiomes across pre-
treatments may vary in available nutrients or profiles of competitors for those niches.
In the current study, our multi-omics approach demonstrated that C. difficile manipu-
lated the niche landscape of the intestinal tract. Instances of active nutrient niche
restructuring in the gut have been documented previously for prominent symbiotic
bacterial species in gnotobiotic mice (25) but not in a conventionally reared animal
model of infection following antibiotic pretreatment. Interestingly, the taxonomic
groups that produced the transcripts that were most altered by C. difficile colonization
were rare in their cecal community. Previous studies have found that rare taxonomic
groups, even those at a low abundance as a result of a spontaneous perturbation, may
have disproportionate effects on the metabolome of the rest of the community (26). For
example, in temperate lakes, conditionally rare microbes were found to be far more
metabolically active than highly abundant taxa (27). These examples of responses to
perturbations are interesting models for thinking about the dynamics of bacterial
populations recovering from an antibiotic perturbation. As such, C. difficile may com-
pete with these organisms to ultimately effect greater change in the entire ecosystem
and open a long-lasting nutrient niche. While this hypothesis requires further explora-
tion, it provides an ecological framework to study the interactions between C. difficile
and members of susceptible communities.

This study is one of the first in vivo observations that a medically relevant bacterial
pathogen may alter the metabolic activity of a host-associated community to promote
its own colonization. This is also the first application of metatranscriptomic analysis of
the gut microbiota in vivo and in response to a pathogen. Other groups have identified
potential metabolite markers of C. difficile infection in patient feces (28), but they were
not able to identify associations with changes in community metabolism that were
afforded to us by our paired metabolomic and metatranscriptomic analyses. In a recent
study, a tick-vectored bacterial pathogen altered the ability of the resident microbiota
of the tick by interrupting proper biofilm formation and allowing lasting colonization
(29). It was also recently found that bacterial metabolic generalists may be more likely
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FIG 5 Metatranscriptomic changes due to infection in certain metabolic pathways are overrepresented in the minority taxa. Log2 metagenome-normalized
cDNA abundances for genes with differential transcription during infection belonging to genera that had a relative abundance greater than 0.1%. Double
asterisks denote genes shared between pretreatment groups. PTS, phosphotransferase system; ssDNA, single-stranded DNA.
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to actively antagonize the growth of other species in an environment that they are
colonizing (30). We previously showed that C. difficile has a wide nutrient niche space
in vivo where it most likely utilizes its role as a metabolic generalist to colonize diverse
gut microbiomes (19). The ability to simultaneously antagonize the metabolism of
surrounding populations in cecal environments that support persistence would explain
the more significant shifts in those metatranscriptomes. While we acknowledge that
this study may not elucidate the specific mechanism by which this interaction occurs,
the combined systems analysis strengthens each individual level of observation. Com-
bining the results from these approaches reveals a clearer understanding of C. difficile-
related microbial ecology. This research lays the groundwork for a more rational
consideration of the metabolic functionalities of bacterial taxa when attempting to
rebuild C. difficile colonization resistance across differentially perturbed gut environ-
ments.

In spite of consistent results across the different methods that we used in this study,
several limitations should be noted. First, as with all transcriptomic studies, the relative
level of mRNA detected for a given gene does not necessarily reflect the amount of
functional protein made by a cell or the posttranslational modifications that are
required to activate the enzymes. Additionally, due to the low relative abundance of
C. difficile in these communities, it was necessary for us to pool samples to generate a
large number of reads from each group rather than sampling multiple replicates within
each group. Greater transcript read abundance per gene allowed for improved surveil-
lance for the activity of low-abundance species as well as greater confidence in genes
found to be highly transcribed. Although the lack of animal-based replication for the
metatranscriptomic data does potentially limit the ability to generalize our results, this
approach has been successfully utilized by numerous groups in the past to accurately
characterize transcriptional activity across communities of bacteria (19, 31–33). Further-
more, the metatranscriptomic data were supported by the 16S rRNA gene sequence
and metabolomic data which were collected from individual animals. With respect to
the metabolomic data, alternative interpretations of the data also exist. For example,
we assumed that metabolites which did not change in concentration between unin-
fected and infected conditions were not impacted by C. difficile colonization. However,
it is possible that the metabolism of C. difficile itself simply substituted for a function
that was already present in the uninfected community. The insights gathered from the
metatranscriptomic data suggest that this was unlikely. By leveraging multiple methods
to test our hypotheses, we were able to mediate the weaknesses of any individual
method and present a more unified description of the system than any of the methods
on their own.

Our study supports the hypothesis that the gut microbiota of healthy individuals
maintains colonization resistance to C. difficile by outcompeting the pathogen for
preferred nutrient niche space. Moreover, these data suggest that the degree to which
the environment of the intestine is altered by infection may be linked to the ability of
the pathogen to remain colonized. Ultimately, our results suggest that each susceptible
and subsequently infected microbiome may be unique and require specific microbes or
functionalities to restore colonization resistance against C. difficile in that specific
context. Conversely, colonization resistance against C. difficile may be the result of
contributions by distinct subcommunities of bacteria across each unique resistant gut
community. Several studies have attempted to identify single bacterial species or
consortia that are able to achieve colonization resistance; however, these efforts have
resulted in only partial resistance (34–37). Considering that the structure and function
of the microbiome are intimately connected to colonization resistance to C. difficile, it
has become imperative to understand the ecological factors that allow some gut
environments to be persistently colonized while others are not. This research lays the
groundwork for future studies to assess context-dependent restoration of C. difficile
colonization resistance and what factors are able to interfere with the ability of
C. difficile to modify gut ecology to promote clearance.
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MATERIALS AND METHODS
Animal care and antibiotic administration. Briefly, approximately equal numbers of male and

female conventionally reared 6- to 8-week-old C57BL/6 mice were randomly assigned to each experi-
mental group (sexes were housed separately). Nine mice were used per experimental/control condition,
and littermates were used as much as possible within each group to account for possible genetic
variability. They were administered one of three antibiotics, cefoperazone, streptomycin, or clindamycin,
before oral C. difficile infection (see Table S1 in the supplemental material). A detailed description of these
animal models was outlined previously (19). A similar experimental design was implemented for
gnotobiotic mice and was performed with the University of Michigan Germfree Mouse Center as
described previously (19). All animal protocols were approved by the University Committee on Use and
Care of Animals at the University of Michigan and carried out in accordance with the approved guidelines
from the Office of Laboratory Animal Welfare (OLAW), United States Department of Agriculture (USDA)
registration, and the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).
The protocol license Institutional Animal Care and Use Committee (IACUC) number for all described
experiments is PRO00006983.

C. difficile infection and necropsy. On the day of challenge, 1 � 103 C. difficile spores were
administered to mice via oral gavage in phosphate-buffered saline (PBS) vehicle. Mock-infected animals
were given an oral gavage of 100 �l PBS at the same time as those mice administered C. difficile spores.
Eighteen hours following infection, mice were euthanized by CO2 asphyxiation and necropsied to obtain
the cecal contents. Aliquots were immediately flash frozen for later DNA extraction. A third aliquot was
transferred to an anaerobic chamber for quantification of C. difficile abundance. The remaining content
in the ceca was mixed in a stainless steel mortar housed in a dry ice and ethanol bath. Cecal contents
from all mice within each pretreatment group were pooled into the mortar prior to grinding to a fine
powder. The ground content was then stored at �80°C for subsequent RNA extraction. For 10-day
colonization studies, fresh stool was collected from infected mice each day beginning on the day of
infection. Mice were monitored for overt signs of disease and were euthanized after the final stool
collection.

C. difficile cultivation and quantification. Cecal samples were weighed and serially diluted under
anaerobic conditions with anaerobic PBS. Differential plating was performed to quantify C. difficile
vegetative cells by plating diluted samples on CCFAE plates (fructose agar plus cycloserine, cefoxitin, and
erythromycin) at 37°C for 24 h under anaerobic conditions (38). Quantification of total C. difficile CFU for
the 10-day colonization experiments was performed from stool using TCCFAE to measure total C. difficile
load in these animals over time.

DNA/RNA extraction and sequencing library preparation. DNA for shotgun metagenomic and 16S
rRNA gene sequencing was extracted from approximately 50 mg of cecal content from each mouse using
the PowerSoil-htp 96-well soil DNA isolation kit (Mo Bio Laboratories) and an EpMotion 5075 automated
pipetting system (Eppendorf). The V4 region of the bacterial 16S rRNA gene was amplified using custom
barcoded primers (39). Equal molar ratios of raw isolated DNA within each treatment group were then
pooled, and ~2.5 ng of material was used to generate shotgun libraries with a modified 10-cycle Nextera
XT genomic library construction protocol (Illumina). This was done to mimic the pooling strategy
necessary for metatranscriptomic library preparation. Final libraries were pooled at equal molar ratios
and stored at �20°C. For RNA extraction, a more detailed description of the procedure can be found in
reference 19. Briefly, immediately before RNA extraction, 3 ml of lysis buffer (2% SDS, 16 mM EDTA, and
200 mM NaCl) contained in a 50-ml polypropylene conical tube was heated for 5 min in a boiling water
bath (40). The hot lysis buffer was added to the frozen and ground cecal content. The mixture was boiled
with periodic vortexing for another 5 min. After boiling, an equal volume of 37°C acid phenol-chloroform
was added to the cecal content lysate and incubated at 37°C for 10 min with periodic vortexing. The
mixture was then centrifuged at 2,500 � g at 4°C for 15 min. The aqueous phase was then transferred
to a sterile tube, and an equal volume of acid phenol-chloroform was added. This mixture was vortexed
and centrifuged at 2,500 � g at 4°C for 5 min. The process was repeated until the aqueous phase was
clear. The last extraction was performed with chloroform-isoamyl alcohol to remove acid phenol. An
equal volume of isopropanol was added, and the extracted nucleic acid was incubated overnight at
�20°C. The following day, the sample was centrifuged at 12,000 � g at 4°C for 45 min. The pellet was
washed with 0°C 100% ethanol and resuspended in 200 �l of RNase-free water. According to the
manufacturer’s protocol, samples were then treated with 2 �l of Turbo DNase for 30 min at 37°C. RNA
samples were retrieved using the Zymo Quick-RNA MiniPrep according to the manufacturer’s protocol.
The Ribo-Zero Gold rRNA removal kit (Epidemiology) was then used to deplete prokaryotic and
eukaryotic rRNA from the samples according to the manufacturer’s protocol (Illumina). Unstranded
transcriptome sequencing (RNA-Seq) libraries were constructed with the TruSeq total RNA library
preparation kit v2, both using the manufacturer’s protocol. Completed libraries were stored at �20°C
until time of sequencing.

High-throughput sequencing and raw read curation. Sequencing of 16S rRNA gene amplicon
libraries was performed using an Illumina MiSeq sequencer as described previously (39). The 16S rRNA
gene sequences were curated using the mothur software package (v1.36), and OTU-based analysis was
performed as described in reference 19. Genus-level classification-based analysis of 16S rRNA gene
sequence data was accomplished using the phylotype workflow in mothur and the full SILVA bacterial
taxonomy (release 132). Shotgun metagenomic sequencing was performed in 2 phases. Libraries from
mock-infected communities, which were also to be utilized for de novo contig assembly, were sequenced
using an Illumina HiSeq 2500 on 2 � 250 paired-end settings, and sequencing was repeated across 2
lanes to normalize for interrun variation. C. difficile-infected metagenomic libraries were sequenced with
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an Illumina NextSeq 300 with 2 � 150 settings across 2 runs to also normalize for interrun variation.
These efforts resulted in an average of 280,000,000 paired raw reads per sample. Metatranscriptomic
sequencing was performed on an Illumina HiSeq 2500 with 2 � 50 settings and was repeated across 4
lanes for normalization and to normalize for technical variation between lanes and to obtain necessary
coverage (32). This gave an average of 380 million raw cDNA reads per library. Both metagenomic
sequencing and metatranscriptomic sequencing were performed at the University of Michigan Sequenc-
ing Core. Raw sequence read curation for both metagenomic and metatranscriptomic data sets was
performed in a two-step process. Residual 5= and 3= Illumina adapter sequences were trimmed using
Cutadapt (41) on a per-library basis. Reads were quality trimmed using Sickle (42) with a quality cutoff
of Q30. This resulted in approximately 270 million reads per library (both paired and orphaned) for both
metagenomic and metatranscriptomic sequencing. Actual read abundances for individual metagenomic
and metatranscriptomic sequencing efforts can be found in Table S4.

Metagenomic contig assembly and gene annotation. Metagenomic contigs were assembled using
Megahit (43) with the following settings: minimum kmer size of 87, maximum kmer size of 127, and a
kmer step size of 10. Prodigal was utilized to identify putative gene sequences, and sequences were
screened for a minimum length of 250 nucleotides. These sequences were translated to amino acids, and
the predicted peptides were annotated based on the KEGG protein database (44) using the Diamond
implementation of BLASTp (45). Peptide-level gene annotations were assigned to the corresponding
nucleotide sequence, and genes failing to find a match in KEGG were preserved as unannotated genes.
Final nucleotide FASTA files with KEGG annotations were then utilized in the construction of Bowtie 2
mapping databases from downstream analyses (46).

DNA/cDNA read mapping and normalization. Mapping of DNA and cDNA reads to the assemblies
was accomplished using Bowtie 2 and the default stringent settings (46). Optical and PCR duplicates were
then removed using Picard MarkDuplicates (http://broadinstitute.github.io/picard/). The remaining map-
pings were converted to idxstats format using SAMtools (47), and the read counts per gene were
tabulated. Discordant pair mappings were discarded, and counts were then normalized to read length
and gene length to give a per-base report of gene coverage. Transcript abundance was then normalized
to gene abundance to yield the overall level of transcription for each gene. Reads contributed by
C. difficile were removed from analysis using Bowtie 2 against the C. difficile strain 630 genome with
settings allowing for up to 2 mismatches.

Quantification of in vivo metabolite relative concentrations. Metabolomic analysis was per-
formed by Metabolon (Durham, NC); for a detailed description of the procedure, refer to reference 19.
Briefly, all methods utilized a Waters Acquity ultraperformance liquid chromatograph (UPLC) and a
Thermo Scientific Q-Exactive high-resolution/accurate mass spectrometer interfaced with a heated
electrospray ionization (HESI-II) source and an Orbitrap mass analyzer at 35,000-mass resolution. Samples
were dried and then reconstituted in solvents compatible with each of the four methods. The first
method had acidic positive conditions using a C18 column (Waters UPLC BEH C18; 2.1 by 100 mm, 1.7 �m)
using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).
The second method was identical to the first but was chromatographically optimized for more hydro-
phobic compounds. The third approach utilized basic negative-ion-optimized conditions using a sepa-
rate dedicated C18 column. Basic extracts were gradient eluted from the column using methanol and
water but, however, with 6.5 mM ammonium bicarbonate at pH 8. Samples were then analyzed via
negative ionization following elution from a hydrophilic interaction chromatography column (Waters
UPLC BEH amide; 2.1 by 150 mm, 1.7 �m) using a gradient consisting of water and acetonitrile with 10
mM ammonium formate, pH 10.8. The mass spectrometry (MS) analysis alternated between MS and
data-dependent MS n scans using dynamic exclusion. The scan range varied slightly between methods
but covered 70 to 1,000 m/z. Library matches for each compound were checked for each sample and
corrected if necessary.

Statistical methods. All statistical analyses were performed using R (v.3.2.0) and the vegan package
(48). Significant differences of inverse Simpson diversity, CFU, and metabolite concentrations were
determined by Wilcoxon signed-rank test with Benjamini-Hochberg correction using a study-wide type
I error rate of 0.05. Undetectable points used the limit of detection for CFU statistical calculations.
Dynamic time warping was performed with the dtw package in R (49). Random Forest was performed
using the AUCRF implementation (21) as well as the standard package (50) in R. Distances of outlier
points from the center line during metatranscriptomic comparisons were determined using
2-dimensional linear geometry.

Data availability. Pooled and quality-trimmed C. difficile-infected metatranscriptomes (Sequence
Read Archive [SRA] accession no. PRJNA354635) and 16S rRNA gene amplicon read data (SRA accession
no. PRJNA383577) from infection experiments are available through the NCBI Sequence Read Archive.
Metagenomic reads and mock-infected metatranscriptomic reads can be found also on the SRA
(PRJNA415307). Data processing steps beginning with raw sequence data to the final manuscript are
hosted at https://github.com/SchlossLab/Jenior_Metatranscriptomics_mSphere_2018.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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FIG S1, PDF file, 0.6 MB.
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